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1. Re-estimating carrying capacity, K 

Due to the extension of the original model described in Cheke et al. [1] to include additional 

larval instar stages, an expression for the carrying capacity was re-derived by solving the 

model presented in the equations (1) to (5) of the main text at equilibrium, i.e., 
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     , to obtain steady state solutions * * * * *( , , , , ).iE L P N Ψ In the 

following we omit the time and temperature dependencies to simplify notation. 
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Re-arranging to obtain expressions for the equilibrium number of parous flies, nullipars and 

total adult female flies, and the expression for carrying capacity as a function of the 

equilibrium number of flies, 
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For a given baseline egg mortality 0
E we can calculate the egg mortality at equilibrium 

density *( )E E  (i.e. after the excess mortality due to density dependence has taken place) 

as follows, 
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Note that this expression is independent of 0
E , and therefore, density-dependent egg 

mortality will stabilize the blackfly population regardless of the value of the baseline egg 

mortality rate. 
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2. Description of approximate Bayesian computation for parameter 

estimation 

Parameter estimation was undertaken using an approximate Bayesian computation (ABC) 

technique implemented using the abc package in the R programming environment. A detailed 

description of ABC methods is given in the published package description [2] and summarised 

here for clarity. Approximate Bayesian computation techniques approximate the posterior 

probability distribution of a set of parameters, here referred to generically as θ. A set of 

parameter values θ�	 is sampled from its prior distribution to simulate a new data set Di. This 

is repeated n times to generate D1, D2 ,…, Dn datasets. A single summary statistic or S(Di) (or 

a set of summary statistics) is computed from each simulated dataset and compared to the 

summary statistics obtained from the actual data S(D0) using a Euclidean distance 

measure, d. Here our summary statistic (calculated for the real and simulated datasets) was 

the Poisson negative likelihood of either the observed or simulated data. The goal of ABC is 

to select only parameter sets that yield distance measures between observed and simulated 

datasets that are below a threshold (i.e. the simulated data are suitably close to the observed 

data). This threshold is defined by a tolerance rate which determines the percentage of 

samples which are accepted. We used a tolerance of 0.3 from 1,500 simulations of 8 

parameters drawn from independent prior distributions. The accepted simulations are 

considered a sample from the approximate posterior distribution. 

The version of ABC inference used for this analysis also employs a post hoc machine learning 

regression technique to improve the approximation of the posterior. In particular, we made use 

of neural networks [3] to correct for the imperfect match between the accepted, S(Di), and 

observed summary statistics (likelihoods), S(D0), using the following non-linear regression 

equation, 

θ� = ���(��)� + �� 
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Here � represents a non-linear regression function based on the nnet package [4], which fits 

a specified number of neural networks (we used the default 10 networks) and takes the median 

value and 	��, a random error with variance �. Parameter sets that closely match the target 

summary statistics (i.e. have a small random error term) are given more weight. A weighted 

sample from the posterior distribution is then obtained from the θ�s, having been corrected 

using the estimate ��(∙) and ��̂ [5]. We also applied a correction for heteroscedasticity, 

θ�
∗ = ����(��)� +

�	� ��(��)�

����(��)�
��̂	 

where ��(∙) is the estimated conditional standard deviation [3]. Using a single summary statistic 

(as employed here), �	� ��(��)� = 0	and therefore θ�
∗ = ����(��)�. 

 

3. Sensitivity of model to changes in parameter values 

 

Table S1 Parameters varied in sensitivity analysis 

Parameter Values considered 

V  0.05 0.1 0.15 0.2 0.25 

L  0.5 0.7 0.8 0.93 0.995 

P  0 0.05 0.1 0.15 ‒ 

0
L  0.225 0.25 0.275 0.3 ‒ 

g  2.5 3 3.5 4 ‒ 

T  25 26 27 28 ‒ 

WT
a 23.6 24.6 25.5 26.5 ‒ 

DBR  100 300 500 700 900 

H

h

 
 
 

 
50 100 200 400 800 

 

a 0.9844 1.0352WT T  .  
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4. Pairs plots of parameter estimates 

We calculated pairs plots for the 8 estimated parameter values to identify any significant 

correlations (Figure S2). For S. squamosum B/S. yahense forest contexts, a negative 

correlation between the adult loss function and baseline larval mortality was observed. This is 

because no relationship between temperature and adult mortality is known for this context, so 

baseline larval mortality and adult mortality are not fully identifiable.  

 

Figure S1 Sensitivity of model output to other parameters not included in Fig 4 of the main text. 
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a S. damnosum s.s./S. sirbanum (savannah) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b S. squamosum B/S. yahense (forest) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2 Pairs plots of estimated parameter values for a) S. damnosum s.s./S. sirbanum 

(savannah) and b) S. squamosum B/S. yahense (forest). Parameters are denoted as 
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follows: var 1, per capita loss rate of adult female flies, V ; var 2, larvicidal efficacy, ��; var 

3, air temperature,	�; var 4, length of gonotrophic cycle,	�; var 5, pre-intervention (baseline) 

larval mortality rate, 
0
L ; var 6, per capita pupal mortality rate, P ; var 7, human population 

density/human blood index,	�/ℎ; var 8, pre-intervention (baseline) daily biting rate, ���∗. 
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5. Results of scenario analysis 
 

Table S1 Proportion of bites averted when varying larvicidal efficacy, number of treatments and interval between treatments for the savannah- 
and forest- parameterised SIMPOP model 

Number of treatments 4 6 8 10 

Context sava forb sava forb sava forb sava forb 
Efficacy 

(%) 
Interval 
(days) 

                

99 7 0.4489 NA 0.5654 NA 0.6406 NA 0.6939 NA 

  14 0.3879 NA 0.4807 NA 0.5464 NA 0.5952 NA 

  21 0.3977 NA 0.4943 NA 0.5609 NA 0.6110 NA 

96 7 NA 0.4184 NA 0.4985 NA 0.5568 NA 0.6015 

  14 NA 0.3821 NA 0.4517 NA 0.5019 NA 0.5428 

  21 NA 0.3766 NA 0.4416 NA 0.4879 NA 0.5223 

93 7 0.3431 0.3740 0.4144 0.4500 0.4687 0.5057 0.5119 0.5500 

  14 0.3178 0.3454 0.3812 0.4103 0.4283 0.4574 0.4656 0.4961 

  21 0.3099 0.3353 0.3659 0.3939 0.4056 0.4358 0.4356 0.4658 

70 7 0.2051 0.2147 0.2547 0.2628 0.2944 0.3020 0.3270 0.3342 

  14 0.1888 0.1949 0.2277 0.2333 0.2572 0.2618 0.2797 0.2835 

  21 0.1757 0.1806 0.2056 0.2097 0.2260 0.2288 0.2403 0.2434 
a savannah; b forest. 
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Table S2 Proportional reduction in DBR when varying larvicidal efficacy, number of treatments and interval between treatments for the 
savannah- and forest- parameterised SIMPOP model 

Number of treatments 4 6 8 10 

Context sava forb sava forb sava forb sava forb 
Efficacy 

(%) 
Interval 
(days) 

                

99 7 0.9701 NA 0.9919 NA 0.9977 NA 0.9993 NA 

  14 0.7919 NA 0.8489 NA 0.8781 NA 0.8953 NA 

  21 0.7165 NA 0.75803 NA 0.7761 NA 0.7847 NA 

96 7 NA 0.8921 NA 0.9506 NA 0.9758 NA 0.9877 

  14 NA 0.706 NA 0.7779 NA 0.8172 NA 0.8413 

  21 NA 0.6227 NA 0.6734 NA 0.6973 NA 0.7095 

93 7 0.8382 0.82582 0.9068 0.9026 0.941 0.9412 0.9604 0.9629 

  14 0.6217 0.6331 0.6789 0.7042 0.7068 0.7427 0.7216 0.7659 

  21 0.5092 0.5392 0.5385 0.5837 0.5489 0.6033 0.5526 0.6126 

70 7 0.5091 0.4612 0.5923 0.5527 0.6421 0.6093 0.6739 0.6477 

  14 0.3357 0.3197 0.3719 0.3692 0.3879 0.38627 0.3951 0.398 

  21 0.2466 0.2434 0.2601 0.2632 0.264 0.2703 0.2652 0.273 
a savannah; b forest. 
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Table S3 Time to bounce-back (days) of adult fly population when varying larvicidal efficacy, 
number of treatments and interval between treatments for the savannah- and forest- 
parameterised SIMPOP model  

Number of 
treatments 4 6 8 10 

Context sava forb sava forb sava forb sava forb 

Efficacy 
(%) 

Interval 
(days) 

                

99 7 175 NA 199 NA 223 NA 244 NA 

  14 142 NA 150 NA 154 NA 158 NA 

  21 130 NA 135 NA 137 NA 138 NA 

96 7 NA 160 NA 181 NA 199 NA 190 

  14 NA 134 NA 144 NA 151 NA 142 

  21 NA 121 NA 127 NA 130 NA 120 

93 7 143 147 156 164 165 178 173 190 

  14 122 124 128 133 131 139 132 142 

  21 109 111 112 116 113 118 113 120 

70 7 108 99 116 111 121 118 125 123 

  14 91 83 96 89 97 92 98 94 

  21 78 69 80 72 81 74 81 74 
a savannah; b forest. 
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Figure S3 Scenario analysis (forest settings) 

Impact of varying the number of larvicide applications (horizontal axes) and the interval 

between applications (in days, vertical axes) on three measures of effectiveness: 1) the 

proportion of bites averted during the intervention (vertical left-hand panels); 2) the 

proportional reduction in DBR (vertical middle panels); 3) the time taken to return to pre-

intervention baseline DBRs (vertical right-hand panels). In a) and b) and c) larvicidal efficacy 

is 96%. In d), e) and f) the results for 93% efficacy are presented. In g), h), and i) larvicidal 

efficacy is 70%. (For precise definitions of the effectiveness measurements see section on 

Scenario analysis in the main text. Equivalent results for the savannah settings are 

presented in Fig 3 of the main text. 
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